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 An analytical solution of the problem of heat conduction in crystallization of a particle on a coating
sprayed by an open jet onto a flat base (substrate) is given in a one-dimensional approximation. The
initial temperature of the particle is equal to the melting temperature of its material. The coating is
considered as a multilayer plate with a layer thickness of one crystallized scale particle; thermal re-
sistance occurs between the layers and between the coating and the substrate. Examples of calcula-
tion of the temperatures in crystallization of the particle near the substrate and at a distance from it
are given.

In spraying of a coating by an open jet, the processes in the coating and its properties are largely
determined by the thermal fields in crystallization of the particles of the coating [1]. We give a solution of
the problem of heat conduction in crystallization of a particle on a coating that is deposited onto a plane base
(substrate). We take into account the thermophysical inhomogeneity of the coating caused by the fact that the
cohesion of contacting scale particles occurs not over the entire area of their mutual contact; where the cohe-
sion between the particles is absent, contact thermal resistance appears.

We will consider a coating as a laminar material with a thickness of the layers representing one scale
particle; the planes of the bases of the layers are in parallel to the plane of the substrate (Fig. 1). The layers
stick to each other and to the substrate discretely, in connection with which we will assume that we have the
specific contact thermal resistance rc (constant and the same everywhere) between the layers of the coating
and between the coating and the substrate. Solving the problem of heat conduction, we assume that the ther-
mophysical properties of materials are constant, the initial temperature of the particles is equal to the melting
temperature Tm of the particle material, which is frequent in plasma spraying, and the particles have the same
velocity of motion and the same diameter before collision with the coating. Upon collision with the coating,
the particles become flattened, forming scales of constant thickness, in practice; the time tcr of their crystal-
lization on any layer of the coating is the same [2], and the free surface of crystallizing particles is heat-in-
sulated.

In the central region of its base, the crystallizing particle sticks to the coating lying below, in connec-
tion with which the contact of the particle with the coating in this region is considered to be ideal. In the
problem of heat conduction in question, we take into account only the part of the particle which lies above
the region of ideal contact. We also assume that the initial temperature of the coating and the substrate Tin is
constant and the heat fluxes in the crystallized layer of the particle, the coating, and the substrate are directed
perpendicularly to the plane of the substrate. This assumption is substantiated by experimental data which
demonstrate that the axes of columnar crystals growing in the crystallizing particle along the heat fluxes are
located perpendicularly, in practice, to the surface of contact of the particle. We assume that the thickness of
the coating layers, with the exception of, may be, a few layers adjacent to the substrate, is constant and equal
to h. Taking into account that the specific thermal resistance of one layer of the coating rcoat is made up of
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the specific thermal resistance of the material of the coating layer rlayer and the contact resistance rcont, rcoat

= rcont + rlayer, where rcoat = h ⁄ λcoat and rlayer = h ⁄ λ1, from which we represent the quantity rcont as

rcont = rlayer 




λ1

λcoat
 − 1




 . (1)

Usually, the quantity λ1 exceeds λcont by several times and in many cases by one or two orders of
magnitude ([1], p. 135); consequently, according to (1), the quantity rcont is approximately as many times
larger than λcoat. We will assume that λ1 is approximately an order of magnitude larger than λcoat. Then in
crystallization of a particle on a coating surface, which is quite distant from the substrate base, the tempera-
ture increase in the coating at a distance larger than h from the particle base will be small, as will be con-
firmed below. In this case, in solution of the problem of heat conduction, the thickness of the layer lying
under the layer with a particle on it can be considered to be infinite. This enables us to disregard the layers
lying below and simplifies the solution of the problem.

Let us consider first thermal processes in crystallization of a particle on a coating layer located at a
large distance from the substrate base. We draw the X axis through the central point of the region of contact
of the particle with the surface layer of the coating perpendicularly to its plane. We locate the origin of co-
ordinates on the layer plane opposite to the plane of contact with the particle and guide the X axis toward the
particle (Fig. 1). According to the above, the temperature distributions over any straight line that is in parallel
to the X axis differ not only in the zero time reference which corresponds to the instant at which the region
of contact of the particle with the coating crosses the straight line in question. For the X axis the zero time
reference corresponds to the instant of contact of the particle with the surface, and the system of equations
for calculation of the thermal fields on the X axis in crystallization of particles will be written as

χ1 
∂2T1

∂x2  = 
∂T1

∂t
 ,   0 ≤ x ≤ X (t) ; (2)

T1 = Tin   for   0 ≤ x ≤ h ,   t = 0 ; (3)

T1 = Tm ;   λ1 
∂T1

∂x
 = Lρ1 

∂X (t)
dt

   for   x = X (t) ; (4)

X (0) = h ;   X (tcr) = 2h ; (5)

Fig. 1. Scheme of a coating with a crystallizing particle on it: 1) coating;
2) liquid phase of the particle; 3) solid phase of the particle; 4) layers of
the coating; 5) substrate.
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χ0 
∂2T0

∂x2  = 
∂T0

∂t
   for   x < 0 ; (6)

λ1 
∂T1

∂x
 = λ0 

∂T0

∂x
 ;   λ1 

∂T1

∂x
 = 

T1 − T0

rcont
   for   x = 0 ; (7)

T0 = Tin   for   t = 0,  x < 0. (8)

So as to decrease the number of parameters and represent the solution of the problem in general
form, we employ the reduced quantities

τ = 
t

tcr
 ;   τcr = 1 ;   x0 = √χ1tcr  ;   y = 

x
x0

 ;

H = 
h

x0
 ;   Y (τ) = 

X (tcrτ)
x0

 ;   θi = 
Ti − Tin

Tm − Tin
 ;   Rcont = 

rcont

x0
 = 

H

λ1
 




λ1

λcoat
 − 1




 ,

(9)

where x0 = √χ1tcr .
In reduced variables, the basic equations with the initial and boundary conditions will have the form

∂2θ1

∂y2  = 
∂θ1

∂τ
 ,   0 ≤ y ≤ Y (τ) ; (10)

θ1 = 0   for   0 ≤ y ≤ H ,   τ = 0 ; (11)

θ1 = 1 ;   
∂θ1

∂y
 = 

1

√π  B
 
dY

dτ
   for   y = Y (t) ; (12)

Y (0) = H ;   Y (1) = 2H ; (13)

χ0

χ1

 
∂2θ0

∂y2  = 
∂θ0

∂τ
   for   y < 0 ; (14)

∂θ1

∂y
 = 
λ0

λ1
 
∂θ0

∂y
 ;   λ1 

∂θ1

∂y
 = 
θ1 − θ0

Rcont
   for   y = 0 ; (15)

θ0 = 0   for   τ = 0,  y < 0, (16)

where B = c1((Tm − Tin) ⁄ (√πL)
The solution to the nonlinear problem of heat conduction (10)–(16) will be sought by solution of the

linear boundary-value problem for an unbounded composite solid body:
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∂2θ1

∂y2  = 
∂θ1

∂t
,   0 ≤ y < ∞ ; (17)

χ0

χ1

 
∂2θ0

∂y2  = 
∂θ0

∂τ
 ,   − ∞ ≤ y < 0 ; (18)

∂θ1

∂y
 = 
λ0

λ1
 
∂θ0

∂y
 ;   λ1 

∂θ1

∂y
 = 
θ1 − θ0

rcont
   for   y = 0 ; (19)

θ0 = 0 ;   θ1 = ψ (y)   for   τ = 0 , (20)

here, ψ(y) = 0 for 0 ≤ y ≤ H.
The function ψ(y) is selected such that for the solution obtained the function Y(τ) satisfies the rela-

tions

θ1 y=Y(τ) = 1 ,   0 ≤ τ ≤ 1 ; (21)

Y (0) = H ,   Y (1) = 2H ; (22)

∂θ1

∂y



 y=Y(τ)

 = 
1

√π  B
 
dY

dτ
 ,   0 ≤ τ ≤ 1 . (23)

Then the solution of the boundary problem (17)–(20) in the case where conditions (21)–(23) are fulfilled will
be the solution of the boundary-value problem (10)–(16) as well. We note that the Green function Gi(y, y′,
τ) for the boundary-value problem (17)–(20) is known ([3], p. 368), and the solution of this problem will be
written as

θi = ∫ 
H

∞

Gi (y, y′, τ) ψ (y′) dy′ ,   i = 0; 1 . (24)

The function ψ(y) can be represented as follows:

ψ =  ∑ 
j=0

∞

 cjϕj (y, bj) , (25)

where

ϕj (y, bj) = 




0   for   y ≤ bj, 
1   for   y > bj,

(26)

the constants b0 = H, bj+1 > bj, cj, j = 0, 1, ..., and bj, j = 1, 2 ..., are selected such that the function ψ(y)
ensures the fulfillment of conditions (21)–(23).
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Having substituted (25) into (24), we find

θi =  ∑ 
j=0

∞

 cjθi
(j) ,   i = 0, 1 , (27)

here

θi
(j) = ∫ 

bj

∞

Gi (y, y′, τ) dy′ . (28)

Having employed the known expressions for Gi and having taken integrals (28), we obtain

θ1
(j) = 

1

2
 



1 + Φ 





y − bj

2 √τ




 + p1Φ

∗  




y + bj

2 √τ








 + p2 exp [K (y + bj) + K2τ] Φ∗  





y + bj

2 √τ
 + K √τ  




 ,

θ0
(j) = (p1 + p2) 










Φ∗  










bj +  y  √ χ1

χ0

2 √τ









  − exp 



K2τ + K 




bj +  y  √ χ1

χ0
 







 Φ∗  










bj +  y  √ χ1

χ0

2 √τ
 + K √τ









  










 ,

(29)

where

p1 = 
1 − A

1 + A
 ;   p2 = 

A

1 + A
 ;   A = 

λ0

λ1
 √ χ1

χ0

 = √λ0c0ρ0

λ1c1ρ1

 ;

K = 
1 + A−1

λ1
−1Rcont

 = 
1 + A−1

H 




λ1

λcoat
 − 1





 ;   Φ∗  (x) = 1 − Φ (x) , (30)

Φ(x) is the error function ([3], p. 470).
Satisfaction of conditions (21)–(23) using the solution (27) will be considered with the example of

the characteristic case

Tin = 290 K ;   
λ1

λcoat
 − 1 = 10 . (31)

With the aim of satisfying approximately conditions (21) and (23), we confine ourselves to the em-
ployment of just the first term of series (27); we take θi in the form

θi = c0θi
(0) , (32)

and c0 and Y(τ) in the form

c0 = 
2

1 + Φ (α0)
 ;   Y (τ) = 2 (α0 + α1τ) √τ  + H . (33)
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Here α1 = −0.013, while α0 is the root of the equation

α (1 + Φ (α)) exp α2 = B . (34)

The quantity B for metals and high-temperature ceramics at Tin = 290 K is very close to unity ([3], p. 280);
therefore, when B = 1 from (34) we obtain α0 = 0.5. Substituting the values of Y(τ) from formulas (33) into
(22), we will have

H = 2 (α0 + α1) = 0.97 . (35)

Thus, the function Y(τ) exactly satisfies relations (22). Having substituted expressions (32) and (33)
into relations (21) and (23), we find that the latter are fulfilled in the crystallization interval approximately;
the left-hand side differs from the right-hand side by less than 2% in (21) and by less than 4% in (23).
Furthermore, when y = −H, according to (29) we have

θ0 < 0.012 . (36)

Thus, expression (32) is an approximate solution of the boundary-value problem (10)–(16), and with
account for (36) it is an approximate solution of the problem of crystallization of a particle on a multilayer
coating. The dependence of θ0 and θ1 on y for τ = 1 is presented in Fig. 2. According to (32) and (29), the
reduced temperature θ1cont of contact of a particle is expressed as follows:

θ1cont = θ1 y=H = 
1

1 + Φ (α0)
 

1 + exp (2KH + K2τ) Φ∗  



H

√τ
 + Kτ






 . (37)

It follows from (37) that, as τ increases from 0 to 1, θ1cont increases slowly from the initial value 1/(1
+ Φ(α0)) to a magnitude 14% higher than this value (Fig. 3). The quantity 1/(1 + Φ(α0) is a reduced tempera-
ture of contact of the particle with the coating in the case λcoat = λ1.

The temperature distributions according to the above solution differ significantly from the temperature
distribution according to the solution of [2], where the coating was considered as a homogeneous semi-
bounded body with a thermal-conductivity coefficient λcoat. For comparison, Fig. 2 presents the reduced tem-
peratures θ0 and θ1 and θ0

′  and θ1
′  as functions of y at the instant of completion of crystallization (τ = 1). The

function θ0
′ , i.e., the distribution of the reduced temperature in the coating, and the function θ1

′ , i.e., the dis-
tribution of the reduced temperature in the particle, are calculated from the solution mentioned [2] of the
problem where the coating is considered as a homogeneous material and the reduced height which corre-
sponds to this solution is denoted as H′.

Fig. 2. Dependence of θ0 and θ1 on y in crystallization of a particle on
a coating layer which is quite distant from the substrate and the depend-
ence of θ0

′  and θ1
′  on y in the case of a thermophysically homogeneous

coating; β is the plane of contact of the particle with the coating.
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The solution (27) obtained for description of the thermal fields in crystallization of a particle on the
coating layers located at a distance from the substrate can be employed with the corresponding replacement
of the quantities for the remaining layers as well (in particular, for the layers located near the substrate), as
will be done below. The reduced thickness H1 of the first layer of the coating can be determined based on
the known solution [2] for thermal processes in crystallization of a particle on the substrate. Let us consider
the case where the thermal-conductivity coefficient of the substrate is substantially higher than the thermal-
conductivity coefficient λ1 of the coating layer and Tin = 290 K. Setting A2 = 10 and B = 1, according to [2]
we obtain H1 = 1.34.

Let us turn to a description of the thermal fields in crystallization of a particle in the first layer in the
case indicated. The difference of this problem from the previous one is that the thickness of the layer in
which the particle is crystallizing is known, as is the contact resistance determined in the first problem. In
this case, the boundary-value problem in dimensionless quantities will be described by relations (10)–(16)
with the replacement of H by H1 in condition (11); in condition (13), it is only the first equality that is left
with replacement of H by H1. The quantity Rcont is determined in the previous problem and is described by
the formula reduced in (9) for H which is given in (35). Accordingly in the auxiliary problem for an un-
bounded composite solid body, H in condition (20) is replaced by H1, while in condition (22) only the first
relation is left with replacement of H by H1. The solution of the resultant auxiliary problem is also expressed
by formula (27) when b0 = H1. The approximate solutions are sought in the form (32) with the value of c0

determined from formula (33) and with the following expression for Y(τ):

Y (τ) = 2 (α0 + α1τ) √τ  + H1 ;   α1 = − 0.004 . (38)

According to (38), the reduced thickness H2 of the second layer of the coating is as follows:

H2 = 2α0 + 2α1 = 0.992 .

The solution obtained approximately satisfies conditions (21) and (23); the left-hand side differs from
the right-hand side by less than 1% in (21) and by less than 2% in (23). The reduced temperature θ1cont of
contact of the particle is described by formula (37) with replacement of H by H1. The quantity θ1cont in this
case is close to the constant 1/(1 + Φ(α0)), differing from it by less than 5% only at the end of crystallization
(Fig. 3). In a similar way, solving the problems of crystallization on the second and subsequent layers, we
arrive at the conclusion that these solutions coincide, in practice, with the solution obtained earlier for layers
which are at a distance from the base. The contact temperature in crystallization of the particle on the first
layer is lower than on the other layers of the coating, which is explained by its larger thickness produced by
a thermal conductivity of the base substantially higher than that of the layer. The found decrease in the tem-
perature substantiates the assumption of a number of researchers that the decrease in the strength of the coat-

Fig. 3. Dependence of θ1cont on τ in crystallization of a particle on the
first layer of the coating (1) and on the second and subsequent layers of
the coating (2).
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ing near the substrate is related to a possible decrease in the contact temperature of the particles at this site;
the cohesive strength of the particles strongly depends on the contact temperature ([1], p. 134). Within the
framework of the investigations performed it is shown that despite the possibility of λcoat << λ1, the contact
temperature of a particle is comparatively close to the contact temperature for λcoat = λ1.

NOTATION

Ti, temperature, λi, thermal-conductivity coefficient; χi, thermal-diffusivity coefficient; ρi, specific
weight; ci, specific heat (i = 1 refers to the values of the temperatures and to the thermophysical properties
in the region x ≥ 0, while i = 0 refers to these values and properties in the region x < 0); L, specific heat of
hardening of the particle material; X(t), coordinate of the crystallization front; h1, thickness of the first layer
of the coating; x, coordinate; t, time; λ1, thermal-conductivity coefficient of the solid phase of the particle;
λcoat, thermal-conductivity coefficient of the coating; rlayer, specific thermal resistance of the material of one
layer of the coating of thickness h. Reduced quantities: τ, time; τcr, crystallization time of the particle, τcr =
1; y, coordinate; y′, integration variable; H, thickness of the coating layer at a distance from the substrate;
Y(t), coordinate of the crystallization front; θi, temperature; rcont, specific contact thermal resistance.
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